

### 1V to 5.5V、2A、100mΩ 理想二极管

# 描述

MX66100 系列是 5.5V、2A 的理想二极管,采用 6 引脚 SOT23 封装。为了降低低压大电流电源的压降,该产品采用低内阻 P 通道 MOSFET。该产品具有主动防倒灌功能,Oring 接法可以选择输入电压高的支路,适合电池应用场合。此外,通过 ON 外接信号可控制内部 MOS 管的导通与关断,从而控制输出的有无,可充当开关使用。在 ON 低电平时,静态电流低至 10nA。

与 MX22917 相比,加快了防倒灌速度,防倒灌阈值为 10mV。

# 特性

- ◆输入电压范围: 1V to 5.5V
- ◆最大连续导通电流: 2A
- ♦ 内阻:

100mΩ@5V输入(典型值)

160mΩ@1.8V输入(典型值)

240mΩ@1V输入(典型值)

♦低待机功耗

导通状态: 5uA典型值

关断状态: 10nA 典型值

♦ 6-Pin SOT23-6和SC-70-6

# 应用

工业系统

可穿戴设备

机顶盒

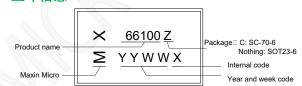
销售终端

血糖仪

# 通用信息

#### 订购信息

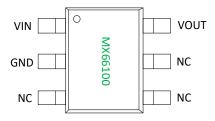
| *1 X 1 L 1 L |         |  |
|--------------|---------|--|
| 产品信号         | 描述      |  |
| MX66100T     | SOT23-6 |  |


| MX66100C | SC-70-6 |
|----------|---------|
| MPQ      | 3000pcs |

### 极限值

| 参数                                | 值            |
|-----------------------------------|--------------|
| VIN/VOUT/ON                       | -0.3 to 6V   |
| IOUT MAX                          | 2A           |
| IPULSE pulse<300us, 2% duty cycle | 2.5A         |
| Junction temperature              | 150°C        |
| Storage temperature, Tstg         | -55 to 150°C |
| Leading temperature (soldering,   | 260℃         |
| 10secs)                           | 200 C        |
| ESD Susceptibility HBM            | ±2000V       |

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.


### 丝印信息



### 引脚定义



SOT23-6



SC-70-6

### 推荐使用范围

| Symbol               | Parameter         | Range     |  |  |  |
|----------------------|-------------------|-----------|--|--|--|
| VDD                  | VDD supply        | 1-5.5V    |  |  |  |
| Junction temperature |                   | -40~125°C |  |  |  |
| P <sub>D_MAX</sub>   | Power dissipation | 0.50W     |  |  |  |



## **GENERAL DESCRIPITION**

The MX66100 are 5.5V, 2A ideal diodes in a 6 pin SOT23 and SC-70-6 package. To reduce voltage drop for low voltage and high current rails, the device implements a low resistance P channel MOSFET which reduces the drop out voltage across the device. During shutdown, the device has very low leakage currents, thereby reducing unnecessary leakages for downstream modules during standby. Integrated control logic, driver, charge pump, and output discharge FET eliminates the need for any external components which reduces solution size and bill of materials count.

## **FEATURES**

♦ Input voltage range: 1V to 5.5V

♦ Maximum continuous current: 2A

♦ On-resistance:

 $100 \text{m}\Omega$  at 5V input voltage (typical)

 $160m\Omega$  at 1.8V input voltage (typical)

 $240m\Omega$  at 1V input voltage (typical)

♦ Ultra-low power consumption

On state: 5uA typical

Off state: 10nA typical

♦ 6-Pin SOT23-6 andSC-70-6

### **APPLICATIONS**

Industrial system

Wearable devices

Set-top box

Sales terminal

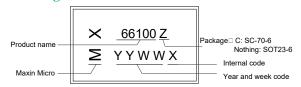
Blood glucose meter

## **GENERAL INFORMATION**

### **Ordering information**

| Part Number | Description |
|-------------|-------------|
| MX66100T    | SOT23-6     |
| MX66100C    | SC-70-6     |
| MPQ         | 3000pcs     |

#### Package dissipation rating

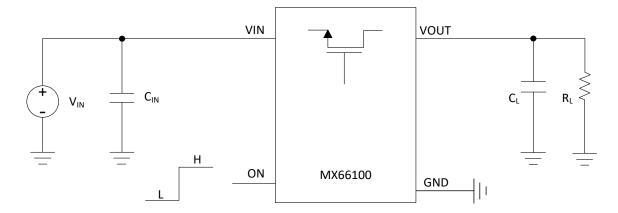

| Package | RθJA (°C/W) |  |  |
|---------|-------------|--|--|
| SOT23-6 | 200         |  |  |
| SC-70-6 | 192         |  |  |

### Absolute maximum ratings

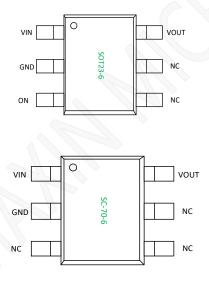
| Parameter                               | Value        |
|-----------------------------------------|--------------|
| VIN/VOUT/ON                             | -0.3 to 6V   |
| IOUT MAX                                | 2A           |
| IPULSE pulse<300us, 2% duty cycle       | 2.5A         |
| Junction temperature                    | 150°C        |
| Storage temperature, Tstg               | -55 to 150°C |
| Leading temperature (soldering, 10secs) | 260℃         |
| ESD Susceptibility HBM                  | ±2000V       |

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

### **Marking information**




### **Recommended operating condition**

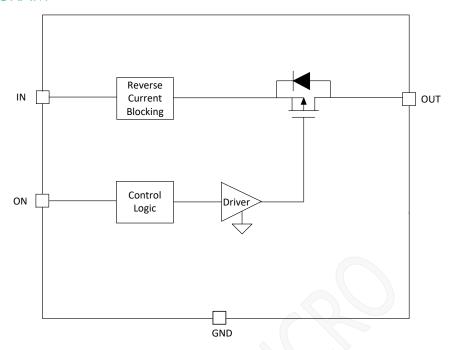

| Symbol               | Parameter         | Range     |
|----------------------|-------------------|-----------|
| VDD                  | VDD supply        | 1-5.5V    |
| Junction temperature |                   | -40~125°C |
| P <sub>D MAX</sub>   | Power dissipation | 0.50W     |



# TYPICAL APPLICATION



# **TERMINAL ASSIGMENTS**




Pin information

| PIN NO. |         | PIN name | Description                                                         |
|---------|---------|----------|---------------------------------------------------------------------|
| SOT23-6 | SC-70-6 |          |                                                                     |
| 1       | 1       | VIN      | Device input                                                        |
| 2       | 2       | GND      | Device ground                                                       |
| 3       |         | ON       | Active high switch control input for MX6610. Do not leave floating. |
| 4、5     | 3、4、5   | NC       | No connected.                                                       |
| 6       | 6       | VOUT     | Device output.                                                      |



## **BLOCK DIAGRAM**

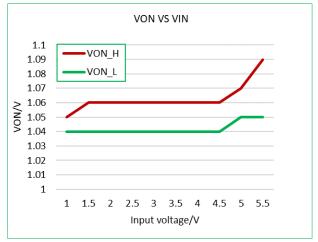


# **Electrical characteristics**

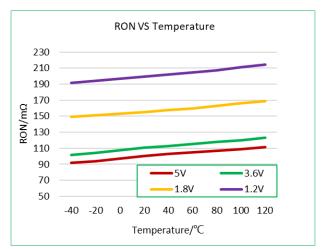
(TA=25°C, VDD=1.0V to 5.5V, unless otherwise noted)

| Symbol              | Parameter                                                   | Test condition  | Min  | Тур. | Max  | Unit      |
|---------------------|-------------------------------------------------------------|-----------------|------|------|------|-----------|
| POWER SU            | PPLY                                                        |                 |      |      |      |           |
| т                   | VINIO : A VOLTE OPEN                                        | -40°C to +85°C  |      | 5    | 10   | μA        |
| $I_{Q\_VIN}$        | VIN Quiescent current, VOUT=OPEN                            | -40°C to +125°C |      |      | 12   | μА        |
| т                   | VIN Charles are AVOLIT CND                                  | -40°C to +85°C  |      | 10   | 100  | nA        |
| I <sub>SD_VIN</sub> | VIN Shutdown current, VOUT=GND                              | -40°C to +125°C |      |      | 250  | nA        |
| ENABLE PI           | N (ON) (only for MX66100T)                                  |                 |      |      |      |           |
| $I_{ON}$            | ON pin leakage, Enabled                                     | -40°C to +125°C | -10  |      | 10   | nA        |
| V <sub>ON_H</sub>   | active threshold                                            | -40°C to +105°C | 0.96 |      | 1.16 | V         |
| V <sub>ON_L</sub>   | off threshold                                               | -40°C to +105°C | 0.94 |      | 1.14 | V         |
| $R_{PD}$            | Smart pulldown resistance, V <sub>ON</sub> ≤V <sub>IL</sub> | -40°C to +105°C |      | 750  |      | kΩ        |
| REVERSE (           | CURRENT BLOCKING (RCB)                                      |                 |      |      |      |           |
| IRCB                | RCB Activation Current, VOUT>VIN                            | -40°C to +125°C |      | -1   | -2   | A         |
| tRCB                | RCB Activation time, VOUT>VIN+200mV                         | -40°C to +125°C |      | 10   |      | μs        |
| VRCB                | RCB Release Voltage, VOUT>VIN                               | -40°C to +125°C |      | 10   |      | mV        |
| IIN_RCB             | VIN Reverse Leakage Current, 0V≤VIN+VRCB≤<br>VOUT           | -40°C to +105°C | -1   |      |      | μΑ        |
| ON STATE            | RESISTANCE (RON)                                            |                 |      |      |      |           |
|                     |                                                             | 25℃             |      | 100  | 120  | mΩ        |
|                     | IOUT 200 A VIN COV                                          | -40°C to +85°C  |      |      | 130  | $m\Omega$ |
|                     | IOUT=200mA, VIN=5.0V                                        | -40°C to +105°C |      |      | 140  | $m\Omega$ |
|                     |                                                             | -40°C to +125°C |      |      | 145  | $m\Omega$ |
| Ron                 |                                                             | 25℃             |      | 110  | 130  | mΩ        |
|                     | IOUT=200mA, VIN=3.6V                                        | -40°C to +85°C  |      |      | 150  | $m\Omega$ |
|                     | IOU1=200mA, VIN=3.6V                                        | -40°C to +105°C |      |      | 160  | mΩ        |
|                     |                                                             | -40°C to +125°C |      |      | 165  | mΩ        |
|                     | IOUT=200mA, VIN=1.8V                                        | 25℃             |      | 150  | 170  | mΩ        |

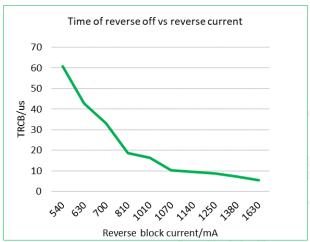



## 1V to 5.5V $\sim$ 2A $\sim$ 100m $\Omega$ Ideal Diode

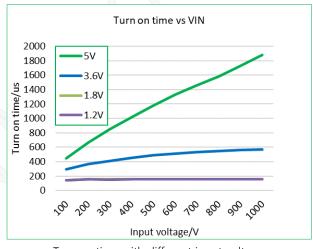
|  |                      | -40°C to +85°C  |     | 185 | mΩ        |
|--|----------------------|-----------------|-----|-----|-----------|
|  |                      | -40°C to +105°C |     | 195 | mΩ        |
|  |                      | -40°C to +125°C |     | 210 | $m\Omega$ |
|  | IOUT=200mA, VIN=1.2V | 25℃             | 200 | 230 | mΩ        |
|  |                      | -40°C to +85°C  |     | 265 | $m\Omega$ |
|  |                      | -40°C to +105°C |     | 280 | $m\Omega$ |
|  |                      | -40°C to +125°C |     | 300 | mΩ        |
|  |                      | 25℃             | 240 | 320 | $m\Omega$ |
|  | IOUT=200mA, VIN=1.0V | -40°C to +85°C  |     | 360 | $m\Omega$ |
|  |                      | -40°C to +105°C |     | 380 | mΩ        |
|  |                      | -40°C to +125°C |     | 390 | mΩ        |


Note: OUT is tied to VDD from a small resistor

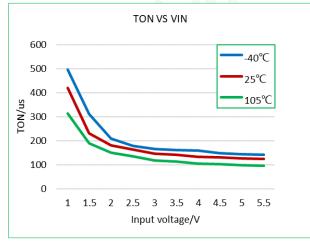



# Characteristic plots

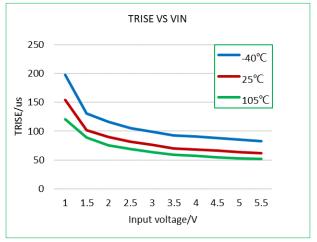



Threshold of VON vs input voltage




Internal PMOS on resistance vs temperature

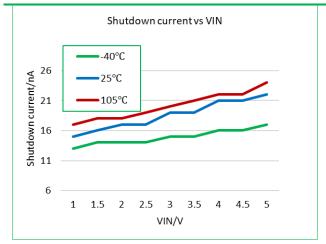


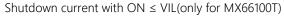

Time of reverse shutdown vs reverse blocking current

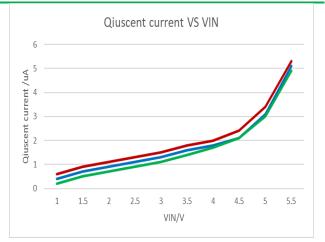


Turn on time with different input voltage




The turn on time vs input voltage





The rising time vs input voltage



## 1V to 5.5V、2A、100m $\Omega$ Ideal Diode







Quiescent current with normal operation



## Operation description

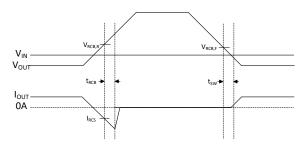
The MX66100 are 5.5V, 2A ideal diodes in 6 pin SOT23 and SC-70-6 package. To reduce voltage drop for low voltage and high current rails, the device implements a low resistance P channel MOSFET which reduces the drop out voltage across the device. During shutdown, the device has very low leakage currents, thereby reducing unnecessary leakages for downstream modules during standby. Integrated control logic, driver, charge pump, and output discharge FET eliminates the need for any external components which reduces solution size and bill of materials count.

#### On and off control (only for MX66100T)

The ON pin controls the state of the switch. The ON pin is compatible with standard GPIO logic threshold so it can be used in a wide variety of applications. The MX66100T is enabled when the voltage applied to the ON pin is pulled above  $V_{\rm IH}$ .

When power is first applied to VIN, a smart pulldown is used to keep the ON pin from floating until system sequencing is complete. After the ON pin is deliberately driven high, the smart pulldown is disconnected to prevent unnecessary power loss. The next table shown when the ON pin smart pulldown is active.

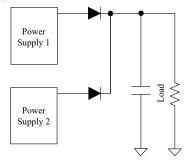
| VON  | Pulldown     |
|------|--------------|
| ≪VIL | Connected    |
| ≥VIH | Disconnected |


### Full time reverse current blocking

In a scenario where the device is enabled and VOUT is greater than VIN there is potential for reverse current to flow through the pass FET or the body diode. When the reverse current threshold (IRCB) is exceeded, the switch is disabled within tRCB. The switch remains off and block reverse current as long as the reverse voltage condition exists. After VOUT has dropped below the  $V_{RCB}$  release threshold the device turns back on.

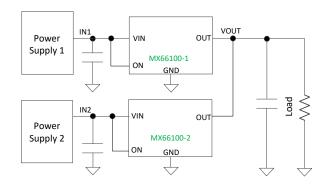
### **Reverse Current Blocking**

The MX66100 initiates reverse current blocking (RCB) when the VOUT voltage is externally biased and exceeds the input voltage supply being used. Once the output voltage is higher than the input voltage by 42 mV (V<sub>RCB, R</sub>), the device will shut off. Once the voltage difference between the output and input


lowers to 17 mV (V<sub>RCB, F</sub>), the channel will turn back on.



If RCB is expected to occur, it is recommended to clamp the output or use a high output capacitance (about 100  $\mu F$ ). This will prevent voltage spikes from damaging the device due to output inductance.


### **Application Information**

Systems that require high availability often use multiple, parallel-connected redundant power supplies to improve reliability. Schottky OR-ing diodes are typically used to connect these redundant power supplies to a common point at the load. The disadvantage of using OR-ing diodes is the forward voltage drop, which reduces the available voltage and the associated power losses as load currents increase.



OR-ing with Diodes

The MX66100 is an OR-ing controller (used on the high-side or positive voltage rail) that replaces an OR-ing diode. When both inputs are applied to the device, the highest voltage is used to power the output.



OR-ing controller



### Power supply recommendations

The device is designed to operate with a VIN range of 1V to 5.5V. The VIN power supply must be well regulated and placed as close to the device terminal as possible. The power supply must be able to withstand all transient load current steps. In most situations, using an input capacitance of 1uF is sufficient to prevent the supply voltage from dipping when switch is turned on. In case where the power supply is slow to respond to a large transient current or large load current step, additional bulk capacitance can be required on the input.

### Thermal considerations

The maximum IC junction temperature must be restricted to 125°C under normal operating conditions. To calculate the maximum allowable dissipation, PD(MAX) for a given output current and ambient temperature, use formula:

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_A}{\theta_{JA}}$$

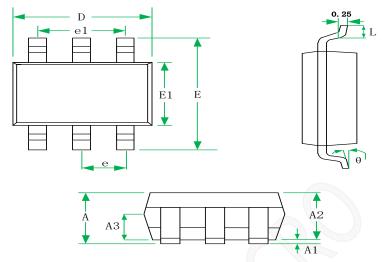
Where

 $P_{D(MAX)}$  = maximum allowable power dissipation

 $T_{J(MAX)}$  = maximum allowable junction temperature

 $T_A$  = ambient temperature of the device

 $\theta_{JA}$  = junction to air thermal impedance.

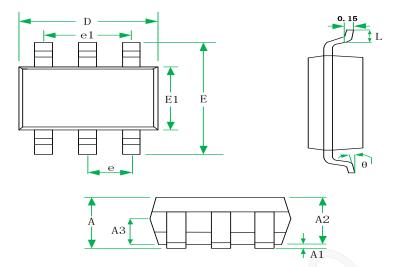

#### Layout guidelines

For best performance, all traces must be as short as possible. To be most effective, the input and output capacitors must be placed as close to the device to minimize the effects that parasitic electrical effects.



# Package information

# SOT23-6




| SYMBOL |       | MILLIMETERS |       |       | INCHES   |       |  |  |
|--------|-------|-------------|-------|-------|----------|-------|--|--|
|        | MIN   | NOM         | MAX   | MIN   | NOM      | MAX   |  |  |
| A      | 1.070 | 1.160       | 1.250 | 0.042 | 0.046    | 0.049 |  |  |
| A1     | 0.02  |             | 0.10  | 0.001 |          | 0.004 |  |  |
| A2     | 1.050 | 1.100       | 1.150 | 0.041 | 0.043    | 0.045 |  |  |
| A3     | 0.60  | 0.65        | 0.70  | 0.024 | 0.026    | 0.028 |  |  |
| D      | 2.820 | 2.920       | 3.020 | 0.111 | 0.115    | 0.119 |  |  |
| Е      | 2.650 | 2.800       | 2.950 | 0.104 | 0.110    | 0.116 |  |  |
| E1     | 1.500 | 1.600       | 1.700 | 0.059 | 0.063    | 0.067 |  |  |
| e      | 4     | 0.95BSC     |       |       | 0.037BSC |       |  |  |
| e1     |       | 1.90BSC     |       |       | 0.075BSC |       |  |  |
| L      | 0.300 |             | 0.500 | 0.012 |          | 0.020 |  |  |
| θ      | 0     |             | 4°    | 0     |          | 4°    |  |  |

SOT23-6 for MX66100T



## SC-70--6



| SYMBOL | MILLIMETERS |      |      | INCHES |        |        |
|--------|-------------|------|------|--------|--------|--------|
|        | MIN         | NOM  | MAX  | MIN    | NOM    | MAX    |
| A      | 0.8         |      | 1.1  | 0.0315 |        | 0.0433 |
| A1     | 0           |      | 0.1  | 0      |        | 0.0039 |
| A2     | 0.8         | 0.9  | 1.00 | 0.0315 | 0.0354 | 0.0394 |
| A3     | 0.47        | 0.52 | 0.57 | 0.0185 | 0.0205 | 0.0224 |
| D      | 1.85        | 2.00 | 2.15 | 0.0728 | 0.0787 | 0.0846 |
| Е      | 1.95        | 2.1  | 2.2  | 0.0768 | 0.0827 | 0.0866 |
| E1     | 1.1         | 1.25 | 1.40 | 0.0433 | 0.0492 | 0.0551 |
| e      | 0.65BSC     |      |      | 0.0256 |        |        |
| e1     | 1.3BSC      |      |      | 0.0512 |        |        |
| L      | 0.26        | 0.36 | 0.46 | 0.0102 | 0.0142 | 0.0181 |
| θ      | 0°          | 4°   | 8°   | 0°     | 4°     | 8°     |

SC-70-6 for MX66100C



## Restrictions on Product Use

- ♦ MAXIN micro is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing MAXIN products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such MAXIN products could cause loss of human life, bodily injury or damage to property.
- ◆ In developing your designs, please ensure that MAXIN products are used within specified operating ranges as set forth in the most recent MAXIN products specifications.
- The information contained herein is subject to change without notice.

Version update information V10 preliminary version V11 add SC-70-6 package