

High PSRR Low Noise 300mA LDO

General Description

The MX517XXYB family are the 300mA LDO with auto discharge function, It uses an advanced CMOS process and a PMOSFET pass device to achieve high power supply rejection ratio (PSRR) ,low noise, low dropout ,low ground current, fast start-up and excellent output accuracy.

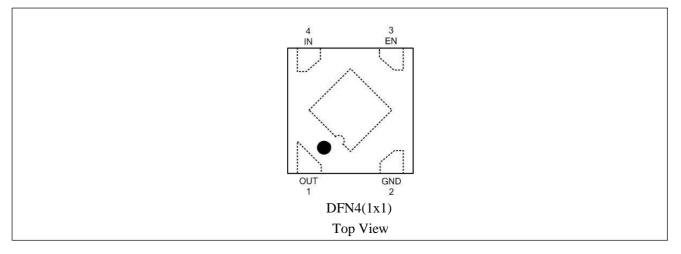
The MX517XXYB family are stable with a 1.0μ F ceramic output capacitor, uses a precision voltage reference and feedback loop to achieve excellent Regulation and transient response.

The MX517XXYB family offered in a small SOT23-5 and DFN4 package, which are ideal for small form factor portable equipment.

The MX517XXYB family are available in standard fixed output voltages of 0.8V(MX51708YB), 1.0V(MX51710YB), 1.1V(MX51711YB), 1.2V (MX51712YB), 1.5V (MX51715YB), 1.8V (MX51718YB), 2.5V (MX51725YB), 2.8 (MX51728YB), 3.0V (MX51730YB), 3.3V (MX51733YB).

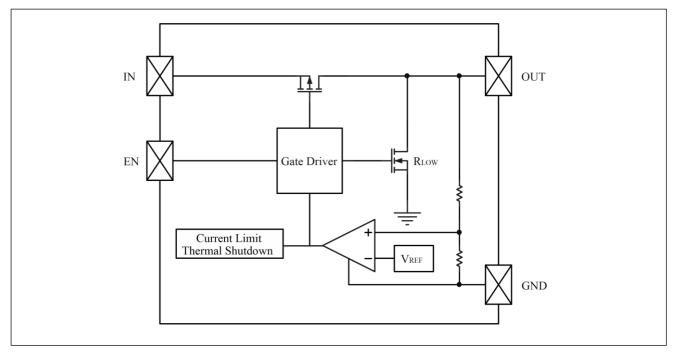

Features

- Wide Input Voltage Range from 1.9V to 5.5V
- Up to 300mA Load Current
- Standard Fixed Output Voltage Options:0.8V,1.0V,1.1V,1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V and 3.3V etc
- Very Low I_Q is $45\mu A$ typical
- Low Dropout is typical 200mV@2.8V at 300mA Load
- Very High PSRR: 75dB at 1KHz
- Very Low Noise is 40uVrms at 1.2V output
- Excellent Load/Line Transient Response
- Part No. and Package


Part No.	Package
MX517XXYB	DFN4

Applications

- Smart Phones and Cellular Phones
- Digital Still Cameras
- Portable instruments


Pin Configuration

Pin Function

Pin No.	Pin Name	Pin Function
1	OUT	Output pin.
2	GND	Ground.
3	EN	Enable control input, active high.
4	IN	Supply input pin.

Block Diagram

Functional Description

Input Capacitor

A 1μ F ceramic capacitor is recommended to connect between V_{IN} and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both V_{IN} and GND.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is from 0.47μ F to 4.7μ F, Equivalent Series Resistance (ESR) is from $5m\Omega$ to $100m\Omega$, and temperature characteristics is X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to OUT and GND pins.

ON/OFF Input Operation

The MX517XXYB is turned on by setting the EN pin high, and is turned off by pulling it low. If this feature is not used, the EN pin should be tied to IN pin to keep the regulator output on at all time.

Ultra Fast Start-up

After enabled, the MX517XXYB is able to provide full power in as little as tens of microseconds, typically 80µs. This feature will help load circuitry move in and out of standby mode in real time, eventually extend battery life for mobile phones and other portable devices.

Current Limit Protection

When output current at the OUT pin is higher than current limit threshold or the OUT pin, the current limit

protection will be triggered and clamp the output current to approximately 500mA to prevent over-current and to protect the regulator from damage due to overheating.

Thermal Shutdown Protection

Thermal protection disables the output when the junction temperature rises to approximately $+155^{\circ}$ C, allowing the device to cool down. When the junction temperature reduces to approximately $+130^{\circ}$ C the output circuitry is enabled again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the heat dissipation of the regulator, protecting it from damage due to overheating.

	_				
	Parameter	Rating	Unit		
	IN Voltage		IN Voltage -0		V
	Other Pin Voltage		V		
Ν	Iaximum Load Current	500	mA		
Maximum Power	DFN4(1x1)	400	mW		
Consumption	SOT23-5	400	mW		
ESD	Human Body Model (JEDEC JS-001)	±4000	V		
ESD	Charged Device Model(JESD22-C101)	±1500	V		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	250	°C/W		
Opera	Operating Junction Temperature -40 to		°C		
Storage Temperature		-65 to 150	°C		
Lead Temperature (Soldering, 10 sec)		300	°C		

Absolute Maximum Ratings

Recommended Operating Conditions

Symbol	Item	Rating	Unit
V _{IN}	Input Voltage	1.9 to 5.5	V
I _{OUT}	Output Current	0 to 300	mA
Та	Operating Ambient Temperature	-40 to 85	°C
C _{IN}	Effective Input Ceramic Capacitor Value	0.47 to 4.7	μF
Cout	Effective Output Ceramic Capacitor Value	0.47 to 4.7	μF
ESR	Input and Output Capacitor Equivalent Series Resistance (ESR)	5 to 100	mΩ

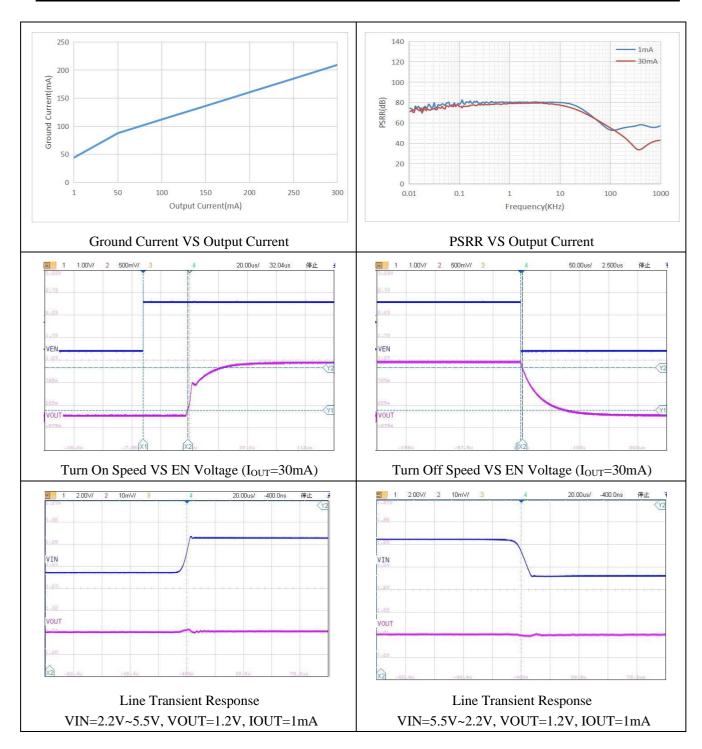
Electrical Characteristics

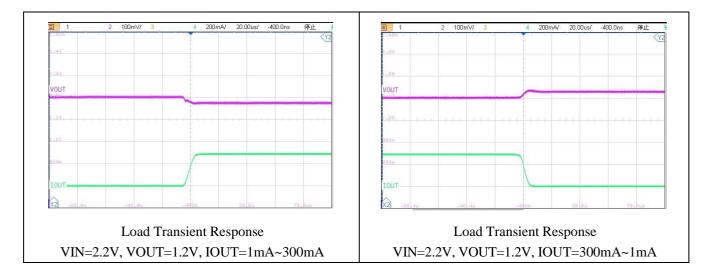
($V_{IN} = V_{EN} = V_{OUT} + 1V$, $T_A = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Operation	V _{IN}		1.9		5.5	v
Range	V IIN		1.7		5.5	•
Dropout Voltage	V _{DROP} (Note1)	$V_{OUT} = 0.8V, I_{OUT} = 300mA$ (Note1)			1100	mV
		$V_{OUT} = 1.0V, I_{OUT} = 300mA$ (Note1)			900	mV
		$V_{OUT} = 1.1V, I_{OUT} = 300mA$ (Note1)			800	mV
		$V_{OUT} = 1.2V, I_{OUT} = 300mA$ (Note1)			700	mV
		$V_{OUT} = 1.5V, I_{OUT} = 300mA$		400	600	mV
		$V_{OUT} = 1.8V, I_{OUT} = 300mA$		300	550	mV
		$V_{OUT} = 2.5V, I_{OUT} = 300mA$		220	450	mV
		$V_{OUT} = 2.8V, I_{OUT} = 300mA$		200	400	mV
		$V_{OUT} = 3.0V, I_{OUT} = 300mA$		190	380	mV
		$V_{OUT} = 3.3V, I_{OUT} = 300mA$		180	350	mV
DC Supply Quiescent Current	I _{Q_ON}	Active mode: V _{EN} =V _{IN}		45	70	μΑ
DC Supply Shutdown Current	$I_{Q \text{ OFF}}$	V _{EN} =0V		0.01	1	μΑ
Regulated Output Voltage	V _{OUT}	I _{OUT} =1mA, -40°C≤T _A ≤85°C	-2		2	%
Output Voltage		$V_{\rm IN} = V_{\rm OUT} + 1V \text{ to } 5.5V,$		0.02	0.0	0/ / 1
Line Regulation		$I_{OUT} = 10 m A$		0.03	0.2	%/V
Output Voltage				20	40	
Load Regulation		I _{OUT} from 0mA to 300mA		20	40	mV
Soft-start Time	Ts	From enable to power on		80		μs
Current Limit	I _{LIMIT}	$R_{LOAD}=1\Omega$	300			mA
Short Current Limit	I _{SHORT}	V _{OUT} =0V		70		mA
	PSRR	f=1kHz, C _{OUT} =1µF, I _{OUT} =20mA		75		dB
Power Supply Rejection Ratio		f=10kHz, C _{OUT} =1µF, I _{OUT} =30mA		65		dB
Output Noise	e _N	10Hz to 100kHz, $I_{OUT} = 200 \text{mA}, V_{OUT} = 2.8 \text{V},$ $C_{OUT} = 1 \mu \text{F}$		60		
		$10Hz \text{ to } 100kHz,$ $I_{OUT} = 200mA, V_{OUT} = 1.2V,$ $C_{OUT} = 1\mu F$		40		μV _{RMS}
EN Low Threshold	V _{IL}				0.3	V
EN High Threshold	V _{IH}		1.2			V

EN Pin Input Current	I _{EN}	$V_{\rm EN} = 0V$		0	0.1	μA
EN pull-down resistance	R _{PD}		0.8	1	1.3	MΩ
Output resistance of auto discharge at off state	R _{LOW}	EN=0V,V _{IN} =4V		80		Ω
Over-temperature Shutdown Threshold	T _{TSD}	T _J rising		155		°C
Over-temperature Shutdown Hysteresis	T _{HYS}	T _J falling from shutdown		20		°C

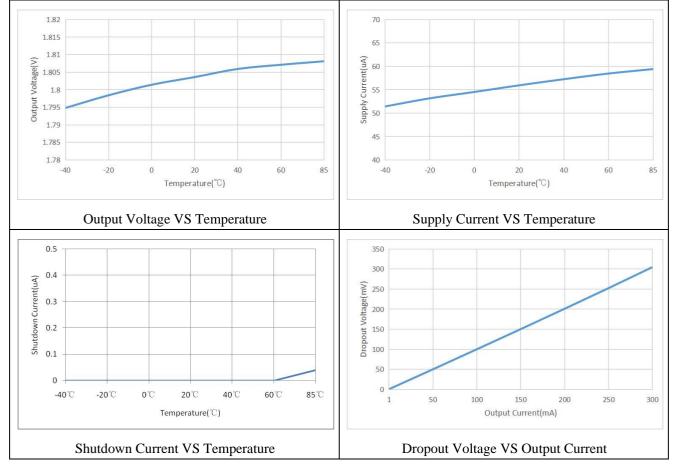

Note: Production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.

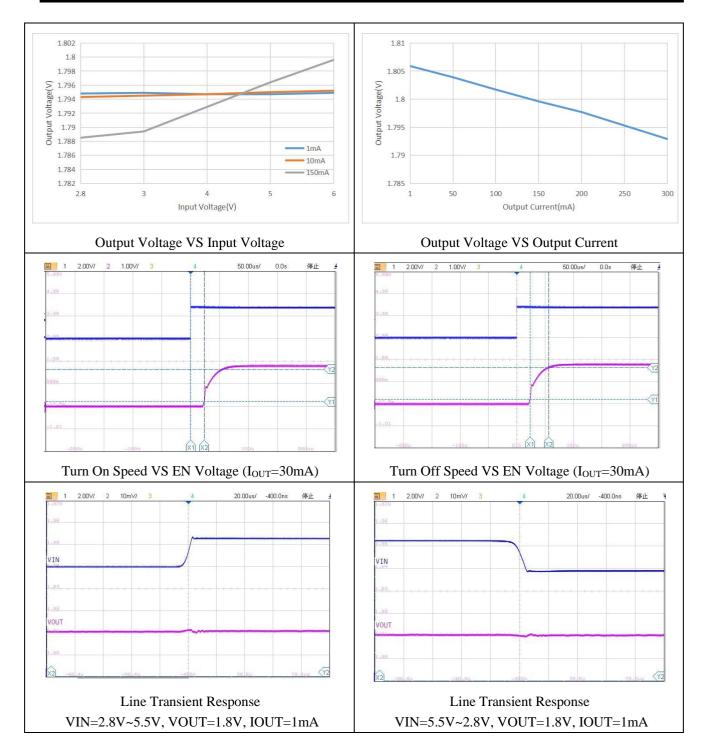

Note1:The minimum operating voltage is $1.9V.V_{DROP}=V_{IN}(min)-V_{OUT}$.

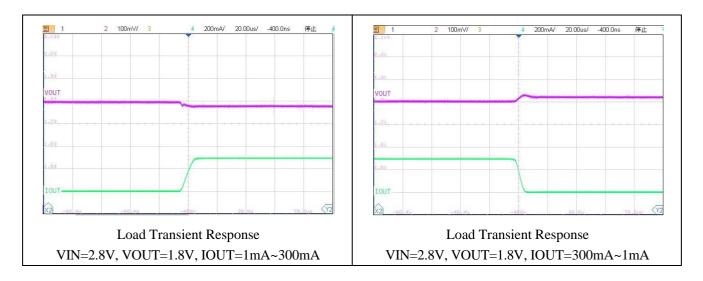

Typical Characteristics

(1) VOLTAGE VERSION 1.2 V

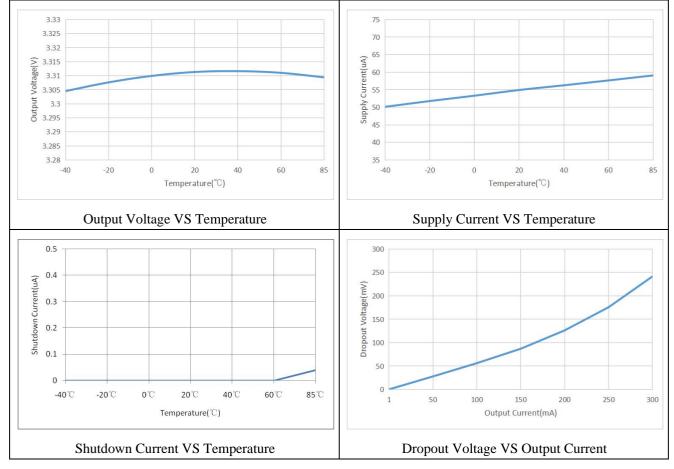
 $(V_{IN} = 2.2V; I_{OUT} = 1mA, C_{IN} = C_{OUT} = 1.0\mu F$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

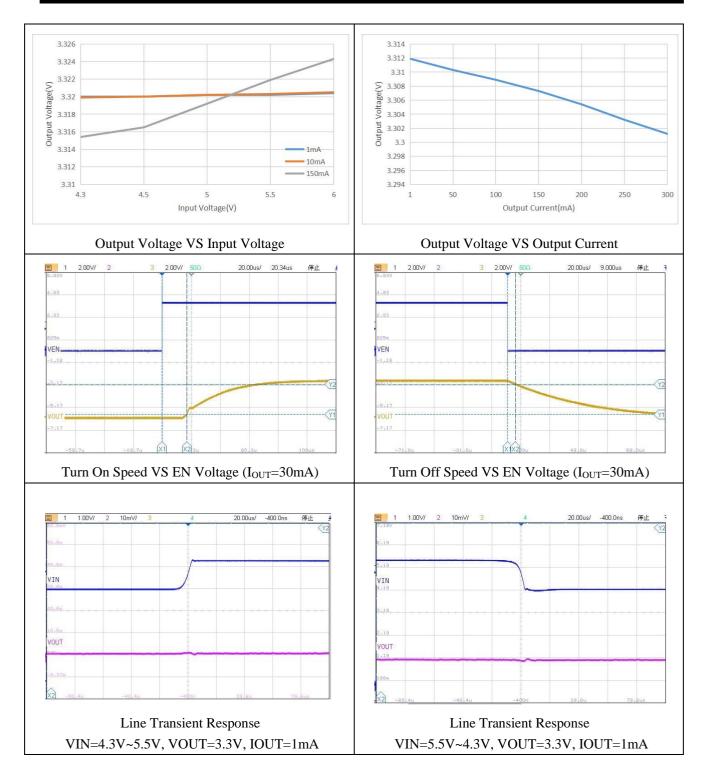


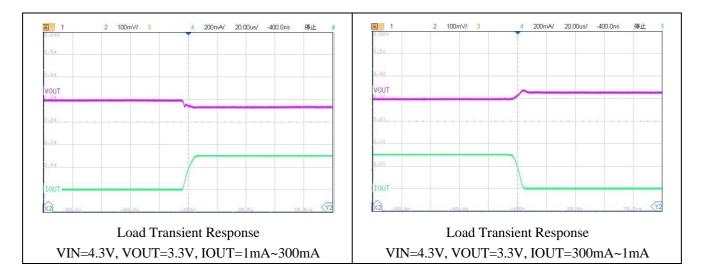




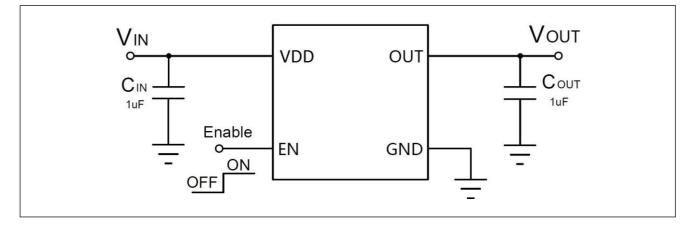
(2) VOLTAGE VERSION 1.8 V

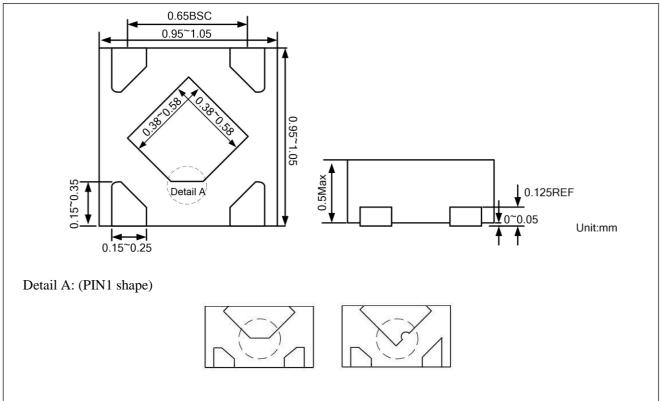






(3) VOLTAGE VERSION 3.3 V





Application Circuits

Package Dimension

DFN4 (1*1)

